Turbulent boundary layer control utilizing the Lorentz force

نویسندگان

  • Timothy W. Berger
  • John Kim
  • Changhoon Lee
  • Junwoo Lim
چکیده

Direct numerical simulations ~DNS! of a turbulent channel flow at low Reynolds number (Ret 5100,200,400, where Ret is the Reynolds number based on the wall-shear velocity and channel half-width! are carried out to examine the effectiveness of using the Lorentz force to reduce skin friction. The Lorentz force is created by embedding electrodes and permanent magnets in the flat surface over which the flow passes. Both open-loop and closed-loop control schemes are examined. For open-loop control, both temporally and spatially oscillating Lorentz forces in the near-wall region are tested. It is found that skin-friction drag can be reduced by approximately 40% if a temporally oscillating spanwise Lorentz force is applied to a Ret5100 channel flow. However, the power to generate the required Lorentz force is an order of magnitude larger than the power saved due to the reduced drag. Simulations were carried out at higher Reynolds numbers (Ret 5200,400) to determine whether efficiency, defined as the ratio of the power saved to the power used, improves with increasing Reynolds number. We found that the efficiency decreases with increasing Reynolds number. An idealized wall–normal Lorentz force is effected by detecting the near-wall turbulent events responsible for high-skin friction. It is found that the drag can be significantly reduced with a greater efficiency than that produced by the spanwise open-loop control approach. This result suggests that, when employed with a closed-loop control scheme, the Lorentz force might result in a net decrease of power required to propel objects through viscous conducting fluids. © 2000 American Institute of Physics. @S1070-6631~00!02203-0#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relaminarisation of Re=100 channel flow with globally stabilising linear feedback control

Related Articles Control of the antisymmetric mode (m=1) for high Reynolds axisymmetric turbulent separating/reattaching flows Phys. Fluids 23, 095102 (2011) Evaluation of active flow control applied to wind turbine blade section J. Renewable Sustainable Energy 2, 063101 (2010) Control of unsteady flow separation over a circular cylinder using dielectric-barrier-discharge surface plasma Phys. F...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

Solution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks

A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.

متن کامل

Solution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks

A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.

متن کامل

Towards an Analytical Model for Film Cooling Prediction using Integral Turbulent Boundary layer

The objective of this work is to develop deep theoretical methods that are based on the solution of the integral boundary layer equations for investigating film cooling in liquid rocket engine. The integral model assumes that heat is transferred from hot free stream gas to the liquid film both by convection and radiation. The mass is transferred to the free srteam gas by the well-known blowing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000